Activities for Teaching Positive Psychology

A Guide for Instructors

Edited by

Jeffrey J. Froh and Acacia C. Parks

American Psychological Association
Washington, DC
CONTENTS

Contributors .. x

Preface .. xii

Introduction ... 1
 Jeffrey J. Froh and Acacia C. Parks

I CONCEPTUAL EXPLORATIONS 1

 1. Courage
 What Makes an Action Courageous? 1
 Cynthia L. S. Purp

 2. Humility
 Humility, the Modest Strength 1
 Robert A. Emmons

 3. Strengths
 Using a Strengths Approach to Build Perspective-Taking Capacity 2
 Michelle C. Louis

 4. Eudaimonia
 Contrasting Two Conceptions of Happiness: Hedonia and Eudaimonia 2
 Alan S. Waterman

 5. Work
 The Value(s) of Work 3
 Christopher Michaelson

 6. Culture and Identity
 Integrating an Understanding of Cultural Context Into a Discussion of Positive Traits 4
 Jennifer Teramoto Pedrotti

 7. Purpose
 Understanding Purpose Through Interviews 4
 Timothy S. Reilly and William Damon

 8. Spirituality
 Spiritual Struggles as a Fork in the Road to the Sacred 5
 Maria R. Gear Haugen and Kenneth I. Pargament

II EXPERIMENTS .. 6

 9. Positive Emotion
 How Positive Emotions Broaden and Build 6
 Bethany E. Kok and Barbara L. Fredrickson
10. Positive Health
 Heart Rate Variation With Positive Psychology Exercises. 65
 Sarah D. Pressman and Tara L. Kraft

11. Relationships
 Capitalizing on Positive Events. 71
 Shelly L. Gable

12. Empathy
 Perspective Taking and Prosocial Behavior:
 Caring for Others Like We Care for the Self. 77
 Michael W. Myers and Sara D. Hodges

13. Culture and Subjective Well-Being
 Culture Influences the Ingredients of a Good Life and Conceptualizations
 of Happiness. 85
 Christie Napa Scollon, Derrick Wirtz, and Xuan-ry Wei

14. Wealth and Subjective Well-Being
 Spending Money on Others Leads to Higher Happiness Than Spending
 on Yourself. 93
 Lara B. Akins and Elizabeth W. Dunn

15. Mindfulness
 Cultivating Mindfulness Through Listening. 99
 Shanna L. Shapiro and Timothy R. Masten

16. Forgiveness
 Teaching Forgiveness in Positive Psychology. 105
 Everett L. Worthington Jr., Aubrey L. Gartner, David J. Jennings II,
 and Don E. Davis

17. Flow
 Flow and Optimal Learning Environments. 109
 David J. Schernoff and Brett Anderson

III SELF-REFLECTIONS 117

18. Gratitude
 Taking Care of Business With Gratitude. 119
 Philip C. Watkins, Amy Sparrow, and Amy C. Webber

19. Curiosity
 Curiosity as a Social Lubricant: Transforming Conversations
 to Be Interesting, Engaging, and Meaningful. 129
 Todd B. Kashdan and Paul J. Silvia

20. Happiness Promotion
 Using Mindful Photography to Increase Positive Emotion
 and Appreciation. 133
 Jaime L. Kurtz and Sonja Lyubomirsky

21. Hope
 Hope Projects to One’s Future Self. 137
 Jeana L. Magyar-Moe
22. **Materialism**
 A Teaching Tool for Disengaging From Materialism:
The Commercial Media Fast

 Yuna L. Ferguson and Tim Kasser

23. **Savoring**
 The Savoring Expedition: An Exercise to Cultivate Savoring

 Patrick R. Harrison, Jennifer L. Smith, and Fred B. Bryant

24. **Motivation**
 Internalized Motivation in the Classroom

 Kennon M. Sheldon

25. **Engagement**
 Civic Engagement

 Constance Flanagan and Brian D. Christens

Index

About the Editors
Flow is a peak experiential state of focused concentration and elevated enjoyment during intrinsically interesting activities. The experience of flow is further characterized by deep absorption, the perception of being in control, loss of self-consciousness, and a distorted perception of time (usually time seems to fly). It is suggested that students first obtain instruction in the basic concept and theory of flow through readings, presentations, or discussions before initiating the activity described in this chapter (suggested readings are provided below). The purpose of the activity is to introduce students to the principal research method for studying flow, the experience sampling method (ESM), and in the process allow students to monitor their level of flow and other subjective perceptions.

The primary materials needed are an electronic device to make multiple alarm sounds and self-report surveys for students to complete when signaled by the alarm. In previous ESM research (see Hektner, Schmidt, & Csikszentmihalyi, 2007), Casio wristwatches equipped with multiple alarms were preprogrammed for signaling respondents, but any device that makes an alarm sound, such as most cell phones, may be used so long as the instructor has determined in advance when to signal the class. A random number generator [several can be found online] can aid in identifying a random time during the activity to signal the class. When signaled, students complete a brief paper-and-pencil survey regarding their subjective experience in the moment just before the signal. Students are provided with a packet of at least five or six customized experience sampling forms (ESFs), one for each activity in which the class is signaled. [See Appendix 17.1. The ESF is a common survey used in this type of research; see Hektner et al., 2007, for additional examples.] In recent years, researchers have experimented with devices that allow respondents to complete ESFs electronically, such as student response systems [i.e., "clickers"]. One advantage of these systems is direct data entry by the participant. A disadvantage, however, may be increased completion time, which is particularly undesirable during instruction.

DOI: 10.1037/14042-018
Activities for Teaching Positive Psychology: A Guide for Instructors. J. L. Froh and A. C. Parks (Editors)
Copyright © 2013 by the American Psychological Association. All rights reserved.
It is suggested that students first be exposed to presentations and readings for background in how and why various aspects of activities are expected to contribute to flow experiences (e.g., Csikszentmihalyi, 1990; Strati, Shernoff, & Kackar, in press). For example, a common property of flow activities is that one knows exactly what needs to be done and how to accomplish it. Once a clear goal is established, what is needed to maintain flow as the activity unfolds is immediate and continual feedback on how well one is doing with respect to reaching the goal. The central theoretical criterion for flow to occur is a high level of skill use to meet a significant challenge presented by the activity. Thus, the activity should neither be too easy nor impossibly difficult; ideally, it is challenging but attainable. The emphasis is more on the process than the product, a process in which the individual feels autonomous and in control through the employment of sufficient skills. The perception of importance or meaningfulness and being active instead of passive have also been found to predict engagement in learning based on the flow model (Shernoff & Csikszentmihalyi, 2009).

Research suggests that students' levels of flow and engagement with learning fluctuate by pedagogical conditions (Shernoff & Csikszentmihalyi, 2009). Therefore, in this activity the instructor signals the students in the class at a random time point while the students are engaged in each of a variety of learning activities throughout an instructional unit on flow and/or student engagement. At the signal, the students complete an ESF. To observe variations in their levels of flow and engagement in learning, it is suggested that students be signaled during at least one high-flow activity and one low-flow activity. Instructors may wish to experiment with creating high- and low-flow activities. Typically, low-flow activities include many common noninteractive, whole group presentations (e.g., lectures), videos, or other activities in which students are relatively passive. High-flow activities are typically structured, challenging, and purposeful, and they solicit the use of students' skills.

One example of a high-flow activity for students is to apply and extend the concept of flow into educational or learning environments based on the premise that flow experiences provide an experiential foundation of engagement with learning. This activity provides students with practice as future educators or practitioners in designing and creating the conditions that allow youth to experience flow. Designing environmental conditions that facilitate flow for a target population, such as children or adolescents, is essential in promoting healthy development as well as meaningful learning experiences (Shernoff, 2011). To design this high-flow activity, divide the classroom into groups of five or six students. Then, tell the students that they will apply their knowledge of flow to a real-world situation to support youth development. Provide each group with written instructions that specify a unique population and context around which the group is to design a flow-inducing activity. In our pilot of this activity, example populations included high school students, middle school students, middle school girls, and late adolescents (e.g., ages 17–22); examples of contexts included an after-school club, an art class, a mentoring program to promote resiliency and leadership, a civic action program to promote citizenship and awareness of societal issues, and a computer science class. This diversity of scenarios is intended to push the limits of the class's collective knowledge about how educators would create flow. The remaining instructions direct each group to identify and describe [a] the activity, [b] defining rules of the activity, [c] instructions for the population, [d] the goals of the activity, [e] infusion of flow conditions, and [f] how the group will know if the activity indeed facilitated flow (i.e.,
method of evaluation). Each student in the group is to be responsible for describing one of these components on a blank sheet of paper by the end of the 35- to 40-minute period, followed by a group discussion.

Once the instructional unit and all of the activities have been completed, provide instructions for students to fill in their ESF ratings on a data table or chart. For example, students can record all of their ratings on a single item (e.g., challenge) in one row of a table, including a note about what activity they were doing at the time of the signal. It is especially instructive to graph the data over the course of the unit. Students simply draw a line graphing their ratings on a single item during each of the activities to see how it varied by activity type and flow conditions. To structure the activity further, graph templates may be prepared in advance numbering each activity and labeling it a high-flow or a low-flow activity. In addition to tracking their ratings of concentration, interest, and enjoyment in activities separately, students can create a composite measure of engagement on the basis of flow theory by calculating the average of these three ratings at the time of each signal (Shernoff & Csikszentmihalyi, 2009). Draw students' attention to how their pattern of engagement (and perceived learning) varied as their perception of challenge, skills, or other flow conditions fluctuated with each activity, as can be demonstrated by graphing these variables on the same graph. An example graph using the actual data from one student in our class when we piloted this activity is provided in Figure 17.1.

If indeed ESM data reveal that students are more engaged in high-flow activities, as in our example, it should not escape notice that this was likely because the conditions for flow were more salient in such activities. The example high-flow activity described above was designed to (a) provide a sense of autonomy and control though designing an
original flow activity and choosing roles; (b) provide a clear goal for each student (i.e., through the specification of individual roles and responsibilities); (c) provide a challenge demanding the use of skills, requiring focused concentration to complete within the time given; (d) provide feedback to each individual from the supervising instructor as well as student collaborators; (e) solicit a variety of skills (e.g., social, verbal, written) and interests; and (f) foster interactivity conducive to “group flow.” The contributions of such conditions in creating flow may be identified and discussed with students in processing the ESM data from the activity.

In piloting the use of the ESM during a unit on flow and student engagement, we utilized a variety of activity types, including lecture/presentation, videos, small- and large-group discussions, written reflections, and structured writing activities (see Writing Component). It was expected that higher engagement would be reported during individual and group work (e.g., the high-flow activity described above and the structured writing activity) as a result of the solicitation of skill use, concentration, and other flow conditions designed into the activity. An analysis of the ESM data collected in our pilot study revealed that perceptions of challenge and skill were indeed significantly higher in these activities than in the others. The engagement composite (i.e., mean of concentration, interest, and enjoyment) was also significantly higher in the writing activity than in the other activities. Engagement was higher in the high-flow activity than in the lecture/presentation activities, but this difference was not statistically significant. Overall, however, optimal learning environments were created when conditions for flow and engagement with learning were intentionally designed, as in the high-flow activity described above (Sheroff, 2011).

Despite the variation in subjective experience students reported during the unit, we wondered whether a larger increase in flow and engagement occurs in activities that are situated outside of the classroom that connect with students’ lives and interests in the “real world” (Sheroff, 2011). Thus, in the following semester in the same course, we created a service learning class project to involve students with a real-life initiative to create a service-oriented student organization on campus. Again, the ESM was administered in a range of activities that included presentations and videos on innovative community service organizations for youth, the creation of a student organization on campus, outreach efforts to attract membership, and the production and distribution of promotional materials. An analysis of the data suggested that situating activities in the real world did not trump the other factors theorized to produce flow, however. In fact, engagement was significantly higher during the flow unit in the first semester than during the community service class project in the second ($F = 3.16, p < .01$). One exception to this trend was that students reported elevated engagement in the second semester during highly structured and interactive service learning group activities to increase awareness of issues such as violence and oppression. Our interpretation is that these were the only activities in which the conditions for flow such as skill use and clear goals were created to a similar extent as in the high-flow activity described earlier.

The reasons that students did not report higher engagement or conditions for flow in the community service class project were left open to interpretation. One reason may be that the goal of the project was not necessarily the students’ own goal but rather imposed by the instructor; thus, there was significant variation in the degree to which students aligned with the goal. If so, it is clear that making an instructional goal clear is not the same thing as individual students having a clear goal for themselves as in
autotelic activities (Csikszentmihalyi, 1990). Second, learning about and applying flow are found by many students to be inherently novel and interesting topics, an interpretation supported by the reflective written comments in the first semester.

A third interpretation is that the experience of engagement and flow in the moment measures only students’ immediate emotional and affective reactions and is separate from larger, more global meaning making at the core of students’ valuations of their educational experiences. In the second semester, most students demonstrated an understanding of how community service was of value to adolescent development. Results of surveys and reflections further revealed that most students felt that working toward social change and making a difference in their community or in the world were important, personally meaningful, and made them feel good about themselves. Overall, these observations were consistent with one of the tenets of positive psychology that two of the three “routes to happiness,” other than the pursuit of pleasure, are engagement [e.g., flow] and meaning [i.e., the pursuit of something larger than one’s self; Parks, Schueller, & Tasimi, in press].

Following the unit on flow, students write written responses to the following questions:

1. What did you learn about flow, or flow in the life of adolescents, that was most valuable?
2. Do you think that the ESM [i.e., beeper] method accurately captured your level of flow and engagement over the course of the unit? Why or why not?
3. Would there be a better way? If so, what?

In this activity, students simultaneously [a] learn about the concept of flow, its relation to learning, and how to apply it to create optimal learning environments; [b] gain an understanding of a leading methodology used to study flow and student engagement [i.e., ESM]; and [c] experience heightened engagement during activities in which conditions for flow were present. As students record and process their ESM data, the conditions most important for creating flow can be identified and discussed. In this manner, students learn and experience the concept of flow and have an opportunity to practice positive psychology.

Overall, this study illustrates some benefits of a research design situated in the context of educational psychology instruction. Through the process, students’ understanding may be deepened. As students record and process their ESM data, for example, the conditions most important for creating flow may be identified and discussed. Instruction and research become interactive and continually inform each other to help students not only learn but also practice educational psychology.

References

1 To better grasp this topic, instructors and students are encouraged to consult the following sources: Csikszentmihalyi (1990); Shernoff and Csikszentmihalyi (2009); Strati, Shernoff, and Kackar (2012).

Appendix 17.1

Experience Sampling Form

Instructions. You will be signaled four times over the course of the unit on flow and student engagement. Each time you are signaled, please complete the below seven items by circling your response. You will be reminded which activity number it is.

Activity number_____

<table>
<thead>
<tr>
<th></th>
<th>Not at all</th>
<th>A little</th>
<th>Somewhat</th>
<th>Pretty much</th>
<th>Very much</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How important was this activity or topic to you and your goals?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Was it interesting?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. Was it challenging?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. Did you enjoy what you were doing?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5. How hard were you concentrating?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6. Were you using a high level of skill?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7. How much were you learning?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>